Single Loop Controller
 Model C1M

Overview

The C1M is a multifunction controller with a $48 \times 48 \mathrm{~mm}$ front panel. It features a large LCD display that makes the status of control visible at a glance.
The result of adding new functions for PID adjustment and engineering to Azbil's conventional model, the C1M is helpful for resolving various control issues that may arise.

Features

- LED display for excellent visibility
- Easy setting by [MODE], [PARA], and digit-change keys on the front panel.
- Input type: thermocouples (K, J, E, T, R, S, B, N, PLII, WRe5-26, PR40-20, DIN U, DIN L), resistance temperature detectors (Pt100, JPt100), current signals ($4-20$ or $0-20 \mathrm{~mA} \mathrm{DC}$), voltage signals ($0-1,1-5,0-5$, or $0-10 \mathrm{~V}$ DC).
- Control output type: relay, voltage pulse, current.
- Heating and cooling control using control output 2 and event output
- ON/OFF control and PID control
- According to the specified model number, the 3 event outputs, 2 event outputs with independent contacts, 2 CT inputs, 2 digital inputs, and RS- 485 communication can be combined.

- Smart Loader Package model SLP-C1F can be used for easy reading and writing of parameters by connecting the included USB loader cable.
With the SLP-C1F, the user can specify settings in a table format, operate this device, and monitor the control situation on the trend screen. There is no need to create programs for communicating with a host device.

Input/Output Configuration

Specifications

PV input (continued)	DC current	
	DC current type	0-20 mA, 4-20 mA
	Indication accuracy (under standard conditions)	± 0.2 \% FS ± 1 digit
	Allowable input	30 mA or less, or 4 V or less
	Input impedance	100Ω max. (with 20 mA input)
	Operation upon input wire burnout	See table 2, "Behavior if a PV Input Error Occurs" (p. 12).
Digital input (DI1-2) (optional)	Number of inputs	2
	Input type	Non-voltage contacts or open collector (sink type)
	Open terminal voltage	5.5 V DC $\pm 1 \mathrm{~V}$
	Terminal current while ON	Approx. 7.5 mA (when shorted) / approx. 5.0 mA (at a contact resistance of 250Ω)
	Allowable ON contact resistance	250Ω max.
	Allowable OFF contact resistance	$100 \mathrm{k} \Omega \mathrm{min}$.
	Allowable ON residual voltage	1.0 V max.
	Minimum hold time	Sampling cycle +10 ms
	Parallel connection circuit voltage	24 V DC max.
	DI assignment	Supported (see DI assignment on p. 9)
Current transformer inputs (CT1-2) (optional)	Number of inputs	2
	Input object	Current transformer with 100-4000 turns (availability is in 100-turn units) Recommended current transformers (not UL-certified) QN206A (hole diameter $5.8 \mathrm{~mm}, 800$ turns) QN212A (hole diameter $12 \mathrm{~mm}, 800$ turns)
	Measurement current	$0.4-50.0 \mathrm{~A} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (peak current: 71 A max. with 800 turns and 1 pass of the power wire)
	Allowable measured current	AC $0.0-70.0 \mathrm{~A}$ and peak current of 110 A max . (with 800 turns and 1 pass of the power wire)
	Allowable input voltage	AC $0.0-100 \mathrm{~mA}$ and peak current of 141.4 mA max. (at the CT input terminal of this device)
	Indication accuracy	$\pm 5 \% \mathrm{FS} \pm 1$ digit (CT accuracy is not included)
	Indication resolution	0.1 A AC
	Precautions when using a CT	Pass the wire carrying the heater current through the CT. Do not use CT input for phase control.
Control output (selectable by model No.)	Relay output	
	Number of inputs	1 max.
	Contact configuration	1c (SPDT)
	Contact rating	$250 \mathrm{~V} \mathrm{AC} \mathrm{/} 30 \mathrm{~V}$ DC, 3 A (resistive load)
	Service life	N.O. side: 100,000 cycles or more N.C. side: 100,000 cycles or more
	Minimum switching specifications	$5 \mathrm{~V}, 100 \mathrm{~mA}$ (reference value)
	Minimum open/close time	50 ms
	Output type	ON/OFF output, time proportional output
	Time proportional cycle	5 to 120 s
	DI assignment / Operation type	Can be selected from ON/OFF control output, time proportional output, time proportional heating/cooling output for heating, time proportional heating/cooling output for cooling, and four types of logical operations.
	Output update cycle for DO assignment	Same as sampling cycle
	Voltage pulse output (for SSR drive)	
	Input type	2 max.
	Open terminal voltage	19 V DC $\pm 15 \%$
	Internal resistance	18Ω
	Allowable current	24 mA DC max.
	OFF-state leak current	100μ A max.
	Short-circuit protection function	Yes
	Minimum OFF/ON time	In time proportional cycle shorter than $10 \mathrm{~s}: 1 \mathrm{~ms}$ In time proportional cycle of 10 s or longer: 250 ms
	Output type	ON/OFF output, time proportional output
	Time proportional cycle	$0.1 \mathrm{~s}, 0.25 \mathrm{~s}, 0.5 \mathrm{~s}, 1$ to 120 s
	DI assignment / Operation type	Can be selected from ON/OFF control output, time proportional output, time proportional heating/cooling output for heating, time proportional heating/cooling output for cooling, and four types of logical operations.
	Output update cycle for DO assignment	Same as sampling cycle

Control output (selectable by model No.) (continued)	Current output	
	Number of inputs	2 max.
	Output type	0-20 mA DC or 4-20 mA DC
	Allowable load resistance	600Ω max.
	Output accuracy	$\pm 0.3 \% \mathrm{FS}$ (However, $\pm 1 \% \mathrm{FS}$ at $0-1 \mathrm{~mA}$) (under standard conditions)
	Output resolution	1/12500 ($0-20 \mathrm{~mA} \mathrm{DC}$), 1/10000 (4-20 mA DC)
	Output update cycle	Same as sampling cycle
	Output type	Can be selected from MV, heating MV (for heating/cooling control), cooling MV (for heating/cooling control), PV, PV (before ratio, bias, filter), SP, deviation (PV - SP), CT1 current, CT2 current, SP + MV, and PV + MV.
Event relay (EV1-3) (optional)	Number of inputs	3 (for models with 3 EV outputs), 2 (for models with 2 EV outputs with independent contacts)
	Contact configuration	1 l (SPST)
	Contact rating	$250 \mathrm{~V} \mathrm{AC} \mathrm{/} 30 \mathrm{~V}$ DC, 2 A (resistive load)
	Service life	100,000 cycles or more
	Minimum switching specifications	$5 \mathrm{~V}, 10 \mathrm{~mA}$ (reference value)
	Minimum open/close time	50 ms
	DI assignment / Operation type	Can be selected from the result of an internal event, ON/OFF control output, time proportional output, time proportional heating/cooling output for heating, time proportional heating/cooling output for cooling, and four types of logical operations.
	Output update cycle for DO assignment	Same as sampling cycle
RS-485 communication (optional)	Transmission line	3 -wire system
	Transmission speed	$4800,9600,19200,38400 \mathrm{bps}$
	Data length	8 bits / 7 bits
	Parity bit	Even parity, odd parity, no parity
	Stop bits	1 bit / 2 bits
	Communication protocol	Host communication: CPL, Modbus ${ }^{\text {TM } / R T U-c o m p l i a n t, ~ M o d b u s / A S C I I-c o m p l i a n t ~ o r ~ P L C ~ l i n k ~}$
	Terminating resistor	External resistor (120 $\Omega, 1 / 2 \mathrm{~W}$ or more) recommended
	Network	Multidrop (up to 31 slave stations for 1 host station)
	Communications/synchronization type	Half-duplex, start-stop synchronization
	Maximum cable length	500 m
Loader communication	Dedicated PC loader	SLP-C1FJA0 (with USB loader cable), SLP-C1FJA1 (without USB loader cable)
	Cables	Dedicated USB loader cable 81441177-001 (included with model SLP-C1FJA0)
General specifications	Standard conditions	
	Ambient temperature	$25 \pm 3{ }^{\circ} \mathrm{C}$ (provided there is a space of 2 cm below the product)
	Ambient humidity	$60 \pm 5 \% \mathrm{RH}$ (without condensation or freezing)
	Power	105 V AC ± 10 \%
	Power frequency	$50 / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
	Vibration	$0 \mathrm{~m} / \mathrm{s}^{2}$
	Shock	$0 \mathrm{~m} / \mathrm{s}^{2}$
	Mounting angle	Reference plane $\pm 3^{\circ}$
	Operating conditions	
	Ambient temperature	Main unit -10 to $+55^{\circ} \mathrm{C}$ (-10 to $+45^{\circ} \mathrm{C}$ for gang-mounting)
	Ambient humidity	$10-85 \% \mathrm{RH}$ (without condensation or freezing)
	Power	$85-264 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$ (Rated power: $100-240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$)
	Vibration	$0-5 \mathrm{~m} / \mathrm{s}^{2}(10-60 \mathrm{~Hz}$ for 2 h each in x, y, and z directions)
	Shock	$0-100 \mathrm{~m} / \mathrm{s}^{2}$
	Mounting angle	Reference plane $\pm 10^{\circ}$
	Transport and storage conditions	
	Ambient temperature	-20 to $+70^{\circ} \mathrm{C}$
	Ambient humidity	$10-85 \% \mathrm{RH}$ (without condensation or freezing, protected from humidity and dust)
	Power	$0-10 \mathrm{~m} / \mathrm{s}^{2}$ ($10-150 \mathrm{~Hz}$ for 2 h each in X, Y, and Z directions)
	Vibration	$0-300 \mathrm{~m} / \mathrm{s}^{2}$ (vertically 3 times)
	Drop test	Drop height 60 cm (free fall on 1 corner, 3 edges, 6 sides)
	Memory backup	EEPROM (durability: 100,000 erase-write cycles)
	Power consumption	8 VA or less (6 VA at $100 \mathrm{~V} \mathrm{AC}, 8 \mathrm{VA}$ at 264 V AC)
	Power-on inrush current	18 A max. / 1.5 ms max.
	Allowable transient power loss	20 ms max.
	Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (Power terminals, and between power terminals and isolated I/O terminals) (with a 500 V DC insulation resistance tester)

General specifications (continued)	Dielectric strength	1500 V AC for 1 minute (between power terminals, and between power terminals and isolated I/O terminals)			
	Laws \& regulations, certification		Law/directive	Certificate/file No., etc.	Remarks
		CE	LVD		EN61010-1
			EMC*		EN61326-1 (For use in industrial locations)
			RoHS		EN IEC63000
		UKCA	LVD		EN61010-1
			EMC*		EN61326-1 (For use in industrial locations)
			RoHS		EN IEC63000
		KC	Radio Waves Act (of Korea)	R-R-A2B-A146	
		* During EMC testing, the indication or output may fluctuate by the equivalent of $\pm 10 \% \mathrm{FS}$.			
	Overvoltage category	II (IEC 60364-4-443, IEC 60664-1)			
	Allowable pollution degree	Pollution degree2			
	Elevation	2000 m max.			
	Installation location	indoors			
	Protection class	IP66 (device front side) (only when individually mounted in a panel using the included gasket)			
	Installation	Panel mounting (with dedicated bracket)			
	Mass	Approximately 130 g (including dedicated mounting bracket)			
	Terminal screw tightening torque	$0.6 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$			
	Case material/color	Modified PPE/black			
	Protective sheet material/ color	PET/black			
Control	Number of loops	1			
	Control method	PID control, ON/OFF control			
	Control action	Heating control (reverse action), Cooling control (direct action)			
	heating/cooling control	Not used, Use (individual PID), Use (shared PID)			
	Control output	Continuous proportional (when control output type is set to current), time proportional (when control output type is set to voltage pulse or relay)			
	Control algorithm	PID (conventional PID), Ra-PID (high-performance PID)			
	PID control				
	Proportional band (P)	0.1 to 999.9 \%			
	Integration time (I)	0 to 9999 ($0=$ no integral operation) (set the number of decimal places ($0-3$) for integral time and derivative time)			
	Derivative time (D)	0 to 9999 ($0=$ no derivative operation) (set the number of decimal places (0-3) for integral time and derivative time)			
	MV low limit • MV high limit	-10.0 \% to +110.0 \%			
	Manual reset	-10.0 \% to +110.0 \%			
	Number of PID groups	8			
	PID group selection	A PID group can be set for each SP group or can be selected by a function assigned to DI or by communication.			
	Auto tuning method	PID automatic setting using the limit cycle method			
	AT type	```0: Normal (regular control characteristics) Immediate response (to disturbance) 2: Stable (minimal PV fluctuation)```			
	Auto tuning adjustment factor	0.00 to 99.99 (for proportional band, integral time, and derivative time)			
	Type of MV switching point at AT	0: Default (2/3 of the deviation of the initial PV from the initial SP), 1: SP, 2: PV			
	MV switching point PV in AT	-1999 to +9999 U			
	Control cycle	Same as sampling cycle			
	ON/OFF control				
	Differential	0 to 9999 U			
	Operating point offset	-1999 to +9999 U			
	SP				
	Number of LSP groups	8 max.			
	SP ramp type	0: Standard 1: Multi-ramp 2: Step operation enabled: Step operation does not resume when the power is turned back on (shifts to READY) 3: Step operation enabled: Step operation resumes when the power is turned back on			
	SP ramp unit	0: $0.1 \mathrm{U} / \mathrm{s}, 1: 0.1 \mathrm{U} / \mathrm{min}, 2: 0.1 \mathrm{U} / \mathrm{h}$			
	SP up ramp / SP down ramp	0.1 to 999.9 U (0.0 U: no ramp)			

Control (continued)	Step operation				
	Number of steps	8 max.			
	Step setup method	Specifying LSP, slope, and time for each step			
	Time unit	0: $0.1 \mathrm{~s}, 1: 1 \mathrm{~s}, 2: 1 \mathrm{~min}$			
	Function	PV start (up start / down start), loop (operation stops (no loop-back), loops back, continues SOAK with the final step's SP (no loop-back))			
	Control action (direct/ reverse)	Switchable			
	Heating/cooling control deadband	-100.0 to +100.0 \%			
	Output operation at PV alarm	0: Continue the control calculation 1: Output the value set for "Output at PV alarm"			
	Output at PV alarm	-10.0 to $+110.0 \%$			
	Output at READY	-10.0 to +110.0 \%			
Event	Number of inputs	0 to 3 (depending on the model No.)			
	Available internal events	5			
	Direct/reverse	Event output ON/OFF polarity can be changed			
	Event state in READY	0 : Continues, 1: Forced OFF			
	Alarm OR	0: None, 1: Alarm direct + OR operation, 2: Alarm direct + AND operation, 3: Alarm reverse + OR operation, 4: Alarm reverse + AND operation			
	Special OFF	0 : No special OFF, 1 : If the main setting for the event is 0 , the event is OFF.			
	Main setting / Sub-setting	-1999 to 9999 U (PV decimal point position determines the number of digits after the decimal point. Range is 0 to 9999 for some operation types.)			
	Hysteresis	0 to 9999 U (PV decimal point position determines the number of digits after the decimal point.)			
	ON delay time / OFF delay time	0.0 to 999.9 s, 0 to 9999 s, 0 to 9999 min (depending on the unit set for delay time)			
	Event types - : ON/OFF changes at the value O: ON/OFF changes when the value is exceeded	PV high limit		PV low limit	
		Direct action	Reverse action	Direct action	Reverse action
		PV high and low limits		Deviation high limit	
		Direct action	Reverse action	Direct action	Reverse action
		Deviation low limit		Deviation high and low limits	
		Direct action	Reverse action	Direct action	Reverse action
		SP high limit		SP low limit	
		Direct action	Reverse action	Direct action	Reverse action
		SP high and low limits		MV high limit	
		Direct action	Reverse action	Direct action	Reverse action
		MV low limit		MV high and low limits	
		Direct action	Reverse action	Direct action	Reverse action
		Heater burnout/overcurrent		Heater short circuit	
		Direct action	Reverse action	Direct action	Reverse action
		OFF before measuring CT current	OFF before measuring CT current	CT when output is OFF \qquad OFF before measuring CT current	CT when output is OFF \longrightarrow OFF before measuring CT current

Event	Event types : ON/OFF changes at the value O: ON/OFF changes when the value is exceeded	Loop diagnosis 3	
		Turns on when the PV does not change according to the increase or decrease of the MV. Use this setting to detect a failure of the actuator, etc. - Settings - Main setting: the amount of a change in the PV from the time when the MV reaches the high limit (100 \%) or the low limit (0 \%) - Sub-setting: the absolute value of deviation (PV-SP) that will turn off the event - ON delay time: diagnosis time - OFF delay time: time from power-on to event OFF - Operation specifications - In direct operation (heating control), the event turns ON if: (1) the amount of PV increase after the diagnosis time (the ON-delay time) elapses after the MV reaches the high limit is smaller than the main setting or (2) the amount of PV decrease after the diagnosis time (the ON-delay time) elapses after the MV reaches the low limit is smaller than the main setting. - In reverse operation (cooling control), the event turns ON if: (1) the amount of PV decrease after the diagnosis time (the ON-delay time) elapses after the MV reaches the high limit is smaller than the main setting or (2) the amount of PV increase after the diagnosis time (the ON-delay time) elapses after the MV reaches the low limit is smaller than the main setting. - If the absolute value of deviation ($\mathrm{PV}-\mathrm{SP}$) is smaller than the sub-setting, the event turns OFF regardless of the other conditions. - If the time from the start of operation after power-on is less than the OFF delay time, the event turns OFF regardless of the other conditions. However, after the absolute value of deviation exceeds the sub-setting, the event turns OFF if the absolute value of deviation becomes smaller than the value obtained by subtracting the hysteresis from the sub-setting. - Note To set the ON and OFF delay times, the user level should be set to "advanced configuration." The ON and OFF delay times are set to 0.0 s when the product is shipped.	
		Direct action	Reverse action
		 If cond. $1 \& 2$ are met, $O N$ delay starts	For cooling control If cond. $1 \& 2$ are met, ON delay starts
		Alarm	(status)
		Direct action	Reverse action
		ON when an alarm (alarm code AL01 to AL99) occurs, OFF otherwise	OFF when an alarm (alarm code AL01 to AL99) occurs, ON otherwise
		READY	(status)
		Direct action	Reverse action
		ON in READY mode OFF in RUN mode	OFF in READY mode ON in RUN mode
		MANUAL	(status)
		Direct action	Reverse action
		ON in MANUAL mode OFF in AUTO mode	OFF in MANUAL mode ON in AUTO mode
		AT in ex	ecution
		Direct action	Reverse action
		ON when AT is running OFF when AT stopped	OFF when AT is running ON when AT stopped
		During	SP ramp
		Direct action	Reverse action
		ON during SP ramp OFF when there is no SP ramp or it is completed	OFF during SP ramp ON when there is no SP ramp or it is completed

Table 1-1. Input Types and Ranges
Indication accuracy (under standard conditions, excluding the reference junction compensation point)

Input type	PV input range type	Sensor type	Range	Indication accuracy	Resolution
Thermocouple	1	K	-200 to $+1200{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	2	K	0 to $1200{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	3	K	0.0 to $800.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	4	K	0.0 to $600.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	5	K	0.0 to $400.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	6	K	-200.0 to $+400.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	9	J	0.0 to $800.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	10	J	0.0 to $600.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	11	J	-200.0 to $+400.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	13	E	0.0 to $600.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	14	T	-200.0 to $+400.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	15	R	0 to $1600{ }^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}: \pm 0.3 \% \mathrm{FS} \pm 1$ digit $0^{\circ} \mathrm{C}$ to less than $200^{\circ} \mathrm{C}: \pm 9^{\circ} \mathrm{C} \pm 1$ digit	$1{ }^{\circ} \mathrm{C}$
	16	S	0 to $1600{ }^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}: \pm 0.3 \% \mathrm{FS} \pm 1$ digit $0^{\circ} \mathrm{C}$ to less than $200^{\circ} \mathrm{C}: \pm 9^{\circ} \mathrm{C} \pm 1$ digit	$1{ }^{\circ} \mathrm{C}$
	17	B	0 to $1800{ }^{\circ} \mathrm{C}$	$1000^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}: \pm 4.5^{\circ} \mathrm{C} \pm 1$ digit $600^{\circ} \mathrm{C}$ to less than $1000^{\circ} \mathrm{C}: \pm 6^{\circ} \mathrm{C} \pm 1$ digit $260^{\circ} \mathrm{C}$ to less than $600^{\circ} \mathrm{C}: \pm 12^{\circ} \mathrm{C} \pm 1$ digit $0^{\circ} \mathrm{C}$ to less than $260^{\circ} \mathrm{C}: \pm 80^{\circ} \mathrm{C}$ (reference value) Temperatures below $20^{\circ} \mathrm{C}$ are not displayed.	$1{ }^{\circ} \mathrm{C}$
	18	N	0 to $1300{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	19	PLII	0 to $1300{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	20	WRe5-26	0 to $1400{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	21	WRe5-26	0 to $2300{ }^{\circ} \mathrm{C}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	23	PR40-20	0 to $1900{ }^{\circ} \mathrm{C}$	$1100^{\circ} \mathrm{C}$ to $1900^{\circ} \mathrm{C}: \pm 12^{\circ} \mathrm{C} \pm 1$ digit $400^{\circ} \mathrm{C}$ to less than $1100^{\circ} \mathrm{C}: \pm 40^{\circ} \mathrm{C} \pm 1$ digit $0^{\circ} \mathrm{C}$ to less than $400^{\circ} \mathrm{C}$: not specified	$1{ }^{\circ} \mathrm{C}$
	24	DIN U	-200.0 to $+400.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	25	DIN L	-100.0 to $+800.0{ }^{\circ} \mathrm{C}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$

Input type	PV input range type	Sensor type	Range	Indication accuracy	Resolution
Resistance temperature detector	41	Pt100	-200 to $+500{ }^{\circ} \mathrm{C}$	± 0.2 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	42	JPt100	-200 to $+500{ }^{\circ} \mathrm{C}$	± 0.2 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{C}$
	43	Pt100	-200 to $+200{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{C}$
	44	JPt100	-200 to $+200{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{C}$
	45	Pt100	-100.0 to $+300.0{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	46	JPt100	-100.0 to $+300.0^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	51	Pt100	-50.0 to $+200.0{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	52	JPt100	-50.0 to $+200.0^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	53	Pt100	-50.0 to $+100.0^{\circ} \mathrm{C}$	± 0.2 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	54	JPt100	-50.0 to $+100.0^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	63	Pt100	0.0 to $200.0{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	64	JPt100	0.0 to $200.0{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$
	67	Pt100	0.0 to $500.0{ }^{\circ} \mathrm{C}$	± 0.2 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$
	68	JPt100	0.0 to $500.0{ }^{\circ} \mathrm{C}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{C}$

Input type	PV input range type	Sensor type	Range	Indication accuracy	Resolution
Linear	84	DC voltage	0 to 1 V	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	The number of decimal places is changeable. (1, 0.1, 0.01, 0.001)
	86		1 to 5 V	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	
	87		0 to 5 V	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	
	88		0 to 10 V	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	
	89	DC current	0 to 20 mA	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	The scaling range is -1999 to +9999 U.
	90		4 to 20 mA	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	

Table 1-2. Input Types and Ranges (${ }^{\circ} \mathrm{F}$)
Indication accuracy (under standard conditions, excluding the reference junction compensation point)

Input type	PV range No.	Sensor type	Range	Indication accuracy	Resolution
Thermocouple	1	K	-300 to $+2200{ }^{\circ} \mathrm{F}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	2	K	0 to $2200{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	3	K	0 to $1500{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	4	K	0 to $1100{ }^{\circ} \mathrm{F}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	5	K	0.0 to $700.0{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	6	K	-300 to $+700{ }^{\circ} \mathrm{F}$	± 0.3 \% FS (load range $\pm 0.6 \%$ FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	9	J	0 to $1500{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	10	J	0 to $1100{ }^{\circ} \mathrm{F}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	11	J	-300 to $+700{ }^{\circ} \mathrm{F}$	$\pm 0.3 \%$ FS (load range $\pm 0.6 \%$ FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	13	E	0 to $1100{ }^{\circ} \mathrm{F}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	14	T	-300 to $+700{ }^{\circ} \mathrm{F}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	15	R	0 to $3000{ }^{\circ} \mathrm{F}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \text { to } 1600^{\circ} \mathrm{C}: \pm 0.3 \% \mathrm{FS} \pm 1 \text { digit } \\ & 0^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C}: \pm 9^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$1{ }^{\circ} \mathrm{F}$
	16	S	0 to $3000{ }^{\circ} \mathrm{F}$	$200^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}: \pm 0.3 \% \mathrm{FS} \pm 1$ digit $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}: \pm 9^{\circ} \mathrm{C}$	$1{ }^{\circ} \mathrm{F}$
	17	B	0 to $3300{ }^{\circ} \mathrm{F}$	$\begin{aligned} & 1000^{\circ} \mathrm{C} \text { to } 1800^{\circ} \mathrm{C}: \pm 4.5^{\circ} \mathrm{C} \\ & 600^{\circ} \mathrm{C} \text { to } 1000^{\circ} \mathrm{C}: \pm 6^{\circ} \mathrm{C} \\ & 260^{\circ} \mathrm{C} \text { to } 600^{\circ} \mathrm{C}: \pm 12^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 260^{\circ} \mathrm{C}: \pm 80^{\circ} \mathrm{C} \text { (reference value) } \\ & \text { Temperatures below } 20^{\circ} \mathrm{C} \text { are not displayed. } \end{aligned}$	$1{ }^{\circ} \mathrm{F}$
	18	N	0 to $2300{ }^{\circ} \mathrm{F}$	± 0.3 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	19	PL II	0 to $2300{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	20	WRe5-26	0 to $2400{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	21	WRe5-26	0 to $4200{ }^{\circ} \mathrm{F}$	$\pm 0.3 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	23	PR40-20	0 to $3400{ }^{\circ} \mathrm{F}$	$\begin{array}{\|l\|} \hline 1100^{\circ} \mathrm{C} \text { to } 1900^{\circ} \mathrm{C}: \pm 12^{\circ} \mathrm{C} \\ 400^{\circ} \mathrm{C} \text { to } 1100^{\circ} \mathrm{C}: \pm 40^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 400^{\circ} \mathrm{C} \text { : not specified } \\ \hline \end{array}$	$1{ }^{\circ} \mathrm{F}$
	24	DIN U	-300 to $+700{ }^{\circ} \mathrm{F}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	25	DIN L	-150 to $+1500{ }^{\circ} \mathrm{F}$	± 0.3 \% FS (load range ± 0.6 \% FS) ± 1 digit	$1{ }^{\circ} \mathrm{F}$

Input type	PV range No.	Sensor type	Range	Indication accuracy	Resolution
Resistance temperature detector (RTD)	41	Pt100	-300 to $+900{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	42	JPt100	-300 to $+900{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	43	Pt100	-300 to $+400{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	44	JPt100	-300 to $+400^{\circ} \mathrm{F}$	± 0.2 \% FS ± 1 digit	$1{ }^{\circ} \mathrm{F}$
	45	Pt100	-150 to $+500{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	46	JPt100	-150 to $+500{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$1{ }^{\circ} \mathrm{F}$
	51	Pt100	-50.0 to $+400.0{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	52	JPt100	-50.0 to $+200.0{ }^{\circ} \mathrm{F}$	± 0.2 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{F}$
	53	Pt100	-50.0 to $+200.0{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	54	JPt100	-50.0 to $+200.0{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	63	Pt100	0.0 to $400.0{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	64	JPt100	0.0 to $400.0{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \mathrm{FS} \pm 1$ digit	$0.1{ }^{\circ} \mathrm{F}$
	67	Pt100	0.0 to $900.0{ }^{\circ} \mathrm{F}$	± 0.2 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{F}$
	68	JPt100	0.0 to $900.0{ }^{\circ} \mathrm{F}$	± 0.2 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{F}$

Table 2. Behavior if a PV Input Error Occurs

Input type	PV input range type	Cause	Indication	Alarm
Thermocouple	1-25	Burnout	Upscale (110 \% FS)	AL01
		Reference junction (cold junction) compensation error	PV with incorrect cold contact compensation	AL03
Resistance temperature detector	41-68	Resistor burnout	Upscale (110 \% FS)	AL01
		Line A burnout		
		Line B burnout		AL01, AL03
		2- or 3-wire burnout		
	41-42	Short circuit, lines A and B	$-235{ }^{\circ} \mathrm{C}(-5 \% \mathrm{FS}) /-235{ }^{\circ} \mathrm{F}$	AL02
	43-44		$-235{ }^{\circ} \mathrm{C}(-9 \% \mathrm{FS}) /-235{ }^{\circ} \mathrm{F}$	
	45-68		Downscale (-10 \% FS)	
DC voltage	84	Burnout	Downscale (-3 \% FS)	AL02
	86		Downscale (-10 \% FS)	
	87		Downscale (-3 \% FS)	
	88		Downscale (0 \% FS)	None
DC current	89		Unknown (around 0 \% FS)	
	90		Downscale (-10 \% FS)	AL02

Model Selection Table

Accessories

Name	Qty.	Notes
Mounting bracket	1	When replacing, use model 84515488-001.
Gasket	1	When replacing, use model 84515487-001.
User's manual	1	Document No. CP-UM-5964JEC

Optional parts

Name	Model No.	Notes
Mounting bracket	$84515488-001$	For maintenance (qty.: 1)
Gasket	$84515487-001$	For maintenance (qty. 20)
Dedicated hard cover	$84515988-001$	
Dedicated terminal cover	$84515888-001$	
Current transformer	QN206A*	800 turns, hole diameter: 5.8 mm
	QN212A*	800 turns, hole diameter: 12 mm
Smart Loader Package	SLP-C1FJA0	With USB loader cable
	SLP-C1FJA1	Without USB loader cable
USB loader cable	$81441177-001$	
L-shaped plug adapter	$81441057-001$	

* Not UL-certified

External dimensions

Unit: mm

- Panel cutout dimensions

For a panel-mounted model, open a hole in the panel as shown below.
Unit: mm

! Handling Precautions

- When three or more units are gang mounted horizontally, the maximum allowable ambient temperature is $45^{\circ} \mathrm{C}$.
- When waterproofing and dust proofing are required, mount the units individually. If units are gang mounted, waterproofing and dust proofing performance cannot be maintained.
- Leave a space of at least 50 mm above and below this device.

Names and Functions of Parts

Model C1M and its console

Terminals

Terminals: Used to connect the power, inputs, outputs, etc. M3 screws are used. For terminal connections, use crimp terminal lugs compatible with M3 screws.
The tightening torque of the terminal screws is $0.6 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$.
(1) Upper display:
(2) [MODE] key:
(3) [PARA] key:
(4) $[<]$, [V$]$, and [$\wedge]$ keys:
(5) MAN mode indicator:
(6) RDY mode indicator:
(7) Event indicator:
(8) Control output indicator:
(9) Status indicator:
(10) AT indicator:
(11) Slope display
(12) Lower display:
(13) Loader connector:
(14) Protective film:

Shows PV (present temperature, etc.) or items that can be set.
Shows the operation display. If it is held down for 1 second or longer, the preset operation (initial setting: AUTO/MANUAL selection) can be executed.
Switches the display.
Used for incrementing/decrementing numeric values and shifting between digits of a number.
Lights up in MANUAL mode.
Lights up in READY (control stop) mode.
Lights up when the corresponding event relay output is ON.
Lights up when the corresponding control output is ON.
Lights up according to the setting of the status indicator (by default, not used).
Flashes during AT execution.
Shows the operation status during a step operation.
Shows the SP (set temperature, etc.) or other settings.
Connected to the PC using the USB loader cable included with the Smart Loader Package.

Protects the surface. Remove the protective film before use.

Terminal connections

- Recommended crimp terminal lugs

Use crimp terminal lugs compatible with M3 screws.

Mounting method	Compatible screw	Terminal dimensions (mm)			Compatible wire size	J.S.T. Mfg. Co., Ltd. Model No. (reference)
		A	B	C		
C1MT (for panel mounting)	M3	6.1	$\begin{gathered} 5.8 \\ \max . \end{gathered}$	5.5-7.6	$\begin{aligned} & 0.3-1.2 \mathrm{~mm}^{2} \\ & 22-16 \mathrm{AWG} \end{aligned}$	V1.25-MS3 (round terminals) V1.25 B3A (Y terminals)

! Handling Precautions

- If this device is installed where there is considerable vibration or shock, be sure to use round crimp terminal lugs to prevent wires from coming off the terminals.
- Be careful not to allow crimp terminal lugs to touch adjacent terminals.

- I/O Isolation

Items enclosed by solid lines are isolated from other signals.
The presence or absence of input/output depends on the model. Thick solid lines indicate reinforced insulation.

Power	Internal circuits	Event outputs 1-3 * On models with independent contacts, event outputs 1 and 2 have reinforced insulation.
DIs 1-2 RS-485 commu- nication		
CT inputs 1-2		Control output 1 (relay)
Loader communication		Control outputs 1-2 (voltage pulse, current)

- FINS is a trademark of Omron Corporation.
- Modbus is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies.
- Other product names, model names, and company names mentioned in the text may be trademarks or registered trademarks of the respective company

Please read "Terms and Conditions" from the following URL before ordering and use.
https://www.azbil.com/products/factory/order.html

Azbil Corporation
Advanced Automation Company
1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: https://www.azbil.com

