TECHNICAL GUIDE FOR PHOTOELECTRIC SWITCHES

DEFINITIONS

Photoelectric switches operate by an emitter unit producing a beam of modulated light that is detected by a receiver, either free-standing or in the same housing, and sensing action occurs when the beam is broken by an object. These switches, like proximity switches, operate without touching the detected object. A wide range of photoelectric switches is available to meet virtually any application need.

Operating principles

Properties of light

Rectilinear propagation: When light travels through air or water, it always travels in a straight line. The aperture mask on the outside of a thru-scan switch that is used to detect small objects is an example of how this principle is applied to practical use.

Refraction: Refraction is the phenomenon of light being deflected as it passes obliquely through the boundary between two media with different refractive indices.

Reflection (regular reflection, retroreflection, diffuse reflection):
A flat surface, such as glass or a mirror, reflects light at an angle equal to the incident angle of the light. This kind of reflection is called regular reflection. A corner cube takes advantage of this principle by arranging three flat surfaces perpendicular to each other. Light emitted toward a corner cube repeatedly propagates regular reflections and the reflected light ultimately moves straight back toward the emitted light. This is referred to as retroreflection. Most reflectors are comprised of corner cubes that measure several square millimeters and are arranged in a precise configuration. Matte surfaces, such as white paper, reflect light in all directions. This scattering of light is called diffuse reflection. This principle is the detection method used by diffuse-scan switches.

Polarization of Light: Light can be represented as a wave that oscillates horizontally and vertically. Photoelectric switches almost always use LEDs as the light source. The light emitted from LEDs oscillates in the vertical and horizontal directions and is referred to as non-polarized light. There are optical filters that constrain the oscillations of non-polarized light to just one direction. These are known as polarizing filters. Light from an LED that passes through a polarizing filter oscillates in only one direction and is referred to as linear polarized light. Polarized light oscillating in the vertical direction cannot pass through a polarizing filter that constrains oscillations to a perpendicular direction (e.g., the horizontal direction). The polarized retroreflective switches and the anti-mutual interference filter accessory for thru-scan switches operate on this principle.

Light sources, emission methods

Pulse Modulated Light
Light is emitted repeatedly at fixed intervals. The effects of ambient light interference are easily removed with this system, enabling long distance detection. In models equipped with anti-mutual interference function, the emission cycle is varied within a specified range to handle coherent light and ambient light interference. The majority of photoelectric switches use pulse modulated light.

Non-modulated Light
Non-modulated light refers to an uninterrupted beam of light at a specific intensity. Although these switches have fast response times, their drawbacks include short sensing distances and susceptibility to ambient light interference.

Light Source Color and Type
<table>
<thead>
<tr>
<th>Type</th>
<th>Principle</th>
<th>Major features</th>
</tr>
</thead>
</table>
| Thru scan | Switch operates when the light between emitter and receiver is blocked by a target object. | • Long-distance detection.
• High accuracy.
• A wide range of applications. |
| Retroreflective Polarized retroreflective | Operation is the same as for a thru-scan switch, but emitter and receiver are housed in the same unit. | • The optical axis can be set easily.
• Wiring and installation work are easy and wiring is necessary for only one device.
• Requires reflection. |
| Diffuse scan | Light from the emitter is reflected by the target object itself. When the reflected light is detected, the switch operates. | • Wiring and installation work are needed only for switch itself, and installation requires little space.
• Light axis alignment is not required.
• Models capable of color discrimination are available. |
| Limited diffuse-scan | Emitter and receiver operate only at a certain angle. Detection occurs only where the emitter and receiver axes meet. | • Influence of background can be reduced.
• Operation differential is small. |
| Background suppression | A beam of light strikes the target object, which is detected by the difference in the angle of the reflected light. | • No interference from high reflectance backgrounds.
• Even if reflectance differs by color or material, target object can be detected reliably.
• Small target objects can be detected with high accuracy. |
| Fiber-optic switches | Fiber-optic cable is comprised of a central core with a high refractive index surrounded by cladding with a low refractive index. Repetitive total internal reflection at the boundary of the less refractive cladding guides the light down the fiber-optic cable. The angle of the light traveling through the fiber-optic cable increases to about 60° by the time the light exits the fiber. | • Highly resistant to noise and other environmental influences with no electrical components in the fiber-optic cable.
• Flexible to various applications with variety of fiber unit line up. |

Typical consoles of fiber-optic switches

HPX series potentiometer tuning fiber-optic switches

- Light indicator (red)
- Stability indicator (green)
- Sensitivity adjustor (3 turns)
- ON/OFF selector
- OFF-Delay switch

HPX-AG/EG digital fiber-optic switches

- SP (green)
- PV (red)
- AUTO/DI: Auto tuning button
- + button
- - button

SCANNING TYPE

Emitter

- **Target object**

Receiver

- **Reflector**

Fiber-optic cable

- **Core**

- **Cladding**

Sheath

- **Fiber unit**

Amplifier
Fiber-optic cable types and characteristics

<table>
<thead>
<tr>
<th>Cross section</th>
<th>Structure</th>
<th>Features</th>
<th>Effective applications</th>
<th>Typical models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbreakable (Multi-core)</td>
<td></td>
<td>● Bending does not almost affect light intensity.</td>
<td>Compared to conventional regular fibers:</td>
<td>Thru scan: HPF-T025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Allowable bend radius: 1 mm or 2 mm.</td>
<td>● As easy to install as soft electrical wiring.</td>
<td>Diffuse scan: HPF-D030</td>
</tr>
<tr>
<td>Regular (single core)</td>
<td></td>
<td>● Efficient light transmission at relatively long scanning ranges.</td>
<td>General use, low cost.</td>
<td>Thru scan: HPF-T003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Allowable bend radius: 10 or 20 mm.</td>
<td></td>
<td>Diffuse scan: HPF-D002</td>
</tr>
<tr>
<td>Bend-tolerant (bundle)</td>
<td></td>
<td>● Excellent bending-resistance characteristics.</td>
<td>Resists damage when mounted to moving parts.</td>
<td>Thru scan: HPF-T008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Repeated bending: 1,000,000 times min. (typical example)</td>
<td></td>
<td>Diffuse scan: HPF-D037</td>
</tr>
</tbody>
</table>

Glossary

Thru-scan switch

A beam (light) receiver and emitter face each other. An object that passes between them is detected when the light intensity transmitted drops because of the object.

Retroreflective switch

An integrated beam (light) emitter-receiver and a reflector face each other. An object that passes between them is detected when the light intensity drops because of the object.

Polarized retroreflective switch

This relatively new type of switch solves a problem of conventional retroreflective switches. Conventional models cannot reliably detect highly reflective target objects because the beam reflected by the reflector cannot be distinguished from light reflected by the target object. However, the use of polarized light allows reliable detection of highly reflective objects, and is nearly as reliable as thru scan sensing.

Principles

This function and structure uses the characteristics of the reflector and the polarizing filters built into the polarized-retroreflective switches to receive only the light reflected from the reflector.

- The waveform of the light transmitted through a polarizing filter in the emitter changes to polarization in a horizontal orientation.
- The orientation of the light reflected from the triangular pyramids of the reflector changes from horizontal to vertical.
- This reflected light passes through a polarizing filter in the receiver to arrive at the receiver.

Purpose

This method enables stable detection of targets with a mirrorlike surface. Light reflected from these types of objects cannot pass through the polarizing filter on the receiver because the orientation of polarization is kept horizontal.

- **Beam strikes polarizing reflector**

 The beam is polarized in the horizontal plane by the emitter. When the light strikes the reflector, its plane of polarization is rotated 90°.
Beam strikes a normal reflective surface

The target object reflects light waves without changing their plane of polarization. These reflected waves are eliminated by a filter.

When a polarized retroreflective switch is used to detect highly reflective object or objects that disturb polarization, detection might be inconsistent. In such case, take the following countermeasures:

Examples of target object that might cause faulty operation:
- Target object covered with a transparent film
- Semi-transparent target object (semi-transparent case, etc.)
- Mirror or highly reflective mirrorlike object

Countermeasures:
- Mount the switch at a slight angle to the target object.
- Increase the distance between the switch and the target object.
- Lower the sensitivity setting of the switch.

Diffuse-scan switch

A beam emitter and a beam receiver are located in close proximity. A passing or approaching object is sensed by the change in the quantity of reflected light caused by the object.

Limited diffuse-scan switches

Limited diffuse-scan switches

Detection method

In the same way as for diffuse-scan switches, limited diffuse-scan switches receive light reflected from the target object to detect it. The emitter and receiver are installed to receive only regular-reflection light, so only objects that are a specific distance (area where light emission and reception overlap) from the switch can be detected. In the figure on the right, the target object at (A) can be detected while the object at (B) cannot.

Background suppression switches

Detection method

The receiver in the switch is a dual photodiode. Target objects closer to the present position are detected by means of beam concentrated position on the photodiode.

Features of background suppression switches

- Operation not greatly affected by target object surface conditions or color
- Operation not greatly affected by the background

Beam emitter

This includes a light source, such as a light-emitting diode (LED), and an optical system (lens).

Beam receiver

The receiver uses a photoelectric conversion device, such as a photo transistor, to detect the beam from the emitter through an optical system (lens).

Scanning range

This is the range within which the photoelectric switch operates reliably.

Thru-scan switch

The maximum distance between emitter and receiver at which operation is reliable.

Retroreflective switch

The maximum distance between switch and reflector at which operation is reliable.

Diffuse-scan switch

(wide beam, limited scan, and background suppression types)

The maximum distance at which operation is reliable with a standard target object.*

Features of background suppression switches

- Operation not greatly affected by target object surface conditions or color
- Operation not greatly affected by the background

Beam emitter

This includes a light source, such as a light-emitting diode (LED), and an optical system (lens).

Beam receiver

The receiver uses a photoelectric conversion device, such as a photo transistor, to detect the beam from the emitter through an optical system (lens).

Scanning range

This is the range within which the photoelectric switch operates reliably.

Thru-scan switch

The maximum distance between emitter and receiver at which operation is reliable.

Retroreflective switch

The maximum distance between switch and reflector at which operation is reliable.

Diffuse-scan switch

(wide beam, limited scan, and background suppression types)

The maximum distance at which operation is reliable with a standard target object.*

*For diffuse-scan switches, since the reflected light level differs depending on the color, material, and size of the target object, a white non-lustrous paper of suitable size for the model is generally used as a standard target object.

Examples of target object that might cause faulty operation:
- Target object covered with a transparent film
- Semi-transparent target object (semi-transparent case, etc.)
- Mirror or highly reflective mirrorlike object

Countermeasures:
- Mount the switch at a slight angle to the target object.
- Increase the distance between the switch and the target object.
- Lower the sensitivity setting of the switch.
Operating angle (area)
This term is used for thru scan and retroreflective switches. It is the angle within which the switch will operate. If this angle is too small, optical axis adjustment is difficult. When it is too large, the switch is vulnerable to interference from nearby photoelectric switches.

Differential travel
This is the ratio of (reset distance - actuation distance) to scanning range under standard operating conditions, with a standard target object.

Operating ambient light
This is the maximum ambient light level at which the photoelectric switch can operate normally.

Optical axis
Optical axis: The axis from the center of the lens to the center of the beam for the emitter, and the axis from the center of the lens to the center of the detection area for the receiver.
Mechanical axis: The axis perpendicular to the center of the lens.

Dead zone: The dead zone outside of the emission and detection areas near the lens surface in background suppression switches, limited diffuse-scan switches, diffuse-scan switches, and polarized-retroreflective switches. Detection is not possible in this area.

Example of diffuse-scan switch

Response time
The time required to output a signal after a target object enters the detection area of the switch. (No output for dark or light status shorter than the response time.)

Timers
For models with timer function, output pulse width and output timing can be set by the user.

ON delay
ON-delay timer delays the output timing or disables short-time outputs. It is used to avoid output chattering or to control detection position.

OFF delay
OFF-delay timer extends the output time. It is effective when the sampling speed of connected device is low comparing with the switch output.

One shot
One-shot timer fixes the output time constant. Output time can be constant regardless of target object size.

Time chart
Available timer types depend on the switch model. Some switch models have complex timer function combining ON-delay and one-shot.
Light-ON

An operating mode in which the switch turns ON when the light intensity entering the receiver increases to a specified level.

Thru-scan/retroreflective switch

- Emitter
- Receiver
- Detection status: Light OFF
- Output: ON

Diffuse-scan switch

- Emitter/receiver
- ON when a target object is present.

Dark-ON

An operating mode in which the switch turns ON when the light intensity entering the receiver decreases to a specified level.

Thru-scan/retroreflective switch

- Emitter
- Receiver
- Detection status: Light
- Output: OFF

Diffuse-scan switch

- Emitter/receiver
- ON when target object is absent.

Standard target object

To determine the scanning range of the diffuse-scan switch, uniform target object (Kodak 90% white paper) is used. The target size, which is larger than the emission beam diameter, depends on the switch models.

Examples
- HP100 series: 30 cm x 30 cm
- HPX-AG series (with diffuse-scan fiber unit): 50 cm x 50 cm
- HPJ series: 10 cm x 10 cm
- HP7 series: 20 cm x 20 cm

Aperture mask

Aperture masks reduce the effective optical area of the emitter and receiver. Round or rectangular masks are most often used.

Relationship of lens diameter and sensitivity to the smallest permissible target size

With a thru-scan switch, the lens diameter determines the smallest permissible target size. A small object can be more easily detected midway between the emitter and the receiver that it can be off center between the emitter and receiver. An object smaller than the lens diameter can be detected by varying the sensitivity level. Check the specifications of the switch for details.
Terms used in photoelectric switch characteristics diagrams are explained below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Meaning</th>
<th>Characteristics diagram</th>
<th>Explanation or application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess gain</td>
<td>This is an indication of the output level of the photoelectric element as determined by the light intensity striking the receiver. Generally, it is expressed as a relative amount, with the required light level set at 1. This characteristic applies to thru-scan, retroreflective, and diffuse-scan switches.</td>
<td></td>
<td>Indicates whether enough light is emitted at the setting and scanning ranges.</td>
</tr>
<tr>
<td>Parallel displacement</td>
<td>This characteristic applies to thru-scan and retroreflective switches. The receiver (for thru-scan switches) or reflector is moved perpendicularly to the optical axis, and the points at which the switch is actuated are noted.</td>
<td></td>
<td>Indicates how diffusely the emitter beam is spread. Provides information about mutual interference when a number of photoelectric switches are parallel to each other.</td>
</tr>
<tr>
<td>Detection area</td>
<td>This characteristic applies to diffuse-scan switches. A standard target object is moved perpendicularly to the optical axis, and the points at which the switch is actuated are noted.</td>
<td></td>
<td>Indicates how diffusely the emitter beam is spread. Provides information about mutual interference when a number of photoelectric switches are parallel to each other.</td>
</tr>
<tr>
<td>Target object size vs. distance</td>
<td>This characteristic applies to diffuse-scan switches. The detection range is noted for different sizes of target object, with the switch set to its maximum sensitivity.</td>
<td></td>
<td>Provides information required to detect objects that are smaller than the standard target object.</td>
</tr>
</tbody>
</table>
TIPS AND PRECAUTIONS

Photoelectric switches have individual and common properties which must be considered for proper operation. Common properties are treated below.

1. Effects determined by the target object

1.1 Target object size

Generally a thru-scan switch can detect any object larger than the smallest permissible target size. Some types of target, however, must be at least several times the minimum size (e.g., moving path). The scanning range of a retroreflective photoelectric switch depends on the size of the target object.

1.2 Target object materials

A thru-scan switch can only detect opaque objects. A switch with a tuning function is required to detect semi-transparent objects. The scanning range of a diffuse-scan switch depends on the target object materials. The relative scanning ranges for various materials are shown below.

<table>
<thead>
<tr>
<th>Material</th>
<th>Relative scanning range</th>
</tr>
</thead>
<tbody>
<tr>
<td>White paper</td>
<td>1</td>
</tr>
<tr>
<td>Red paper</td>
<td>2</td>
</tr>
<tr>
<td>Blue paper</td>
<td>3</td>
</tr>
<tr>
<td>Black paper</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated cardboard</td>
<td>2</td>
</tr>
<tr>
<td>Wood</td>
<td>3</td>
</tr>
<tr>
<td>Iron sheet</td>
<td>1</td>
</tr>
<tr>
<td>Aluminum sheet</td>
<td>2</td>
</tr>
<tr>
<td>Sheet glass</td>
<td>3</td>
</tr>
<tr>
<td>ABS (white)</td>
<td>1</td>
</tr>
</tbody>
</table>

1.3 Target object speed

The following equation tells how the width and speed of a target object affects the response time of a photoelectric switch.

\[W = V/T + A \]

W: Width of a detectable object (m)
V: Passing speed of the object (m/s)
T: Response time of photoelectric switch (s)
A: Minimum width of target object for the photoelectric switch (m)

2. Mounting

2.1 Mutual interference

Incorrect operation may occur due to mutual interference of photoelectric switches mounted in close proximity. The following measures can be taken to avoid mutual interference.

<table>
<thead>
<tr>
<th>Countermeasures</th>
<th>Thru-scan switches</th>
<th>Diffuse-scan switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a switch with anti-mutual interference function.</td>
<td>If switches are mounted in close proximity, use switches with anti-mutual interference function, such as HP100 series (excluding thru-scan model), HPX series and HPX-AG series. Anti-mutual interference function is not effective between different switch models. Even for the same switch models with anti-mutual interference function, digital PV indication might fluctuate. In this case, take additional countermeasures.</td>
<td>If switches are mounted in close proximity, use switches with anti-mutual interference function, such as HP100 series (excluding thru-scan model), HPX series and HPX-AG series. Anti-mutual interference function is not effective between different switch models. Even for the same switch models with anti-mutual interference function, digital PV indication might fluctuate. In this case, take additional countermeasures.</td>
</tr>
<tr>
<td>Install an anti-mutual interference filter.</td>
<td>For the HP100, etc., installing an anti-mutual interference filter allows gang-mounting (up to 2 units). Anti-mutual interference filter: HP100-U01</td>
<td>---</td>
</tr>
<tr>
<td>Separate switches to distance where interference does not occur.</td>
<td>Check the parallel displacement characteristics, and install the switches accordingly at a distance at least 1.5 times the parallel displacement range.</td>
<td>Separate the switches by at least 1.5 times the detection area.</td>
</tr>
</tbody>
</table>

Alternate emitters and receivers.

Gang mounting of switches is possible by alternating the emitters with the receivers in a zigzag fashion (up to two units). However, if the target object is close to the photoelectric switches, light from the adjacent emitter may be received and cause the switch to change to the incident light state.

Offset the optical axes.

If there is a possibility that light from another switch may enter the receiver, change the position of the emitter and receiver, place a light barrier between the switches, or take other measures to prevent the light from entering the receiver. (Light may enter even if the switches are separated by more than the scanning range.)

Adjust the sensitivity. Lowering the sensitivity will generally help.

2.2 Reflection from surrounding objects

A flat surface (especially a smooth surface) may compromise performance. Reflected light may cause unreliable operation (as illustrated below). Raise or lower the switch or use a light-shielding plate to ensure reliable operation.

Switch
Target object
Emitter Receiver
Switch
Target object
Emitter Receiver
White paper
Red paper
Blue paper
Black paper
Corrugated cardboard
Wood
Iron sheet
Aluminum sheet
Sheet glass
ABS (white)

Countermeasures: Install an anti-mutual interference filter (HP100-U01). Check the parallel displacement characteristics, and install the switches accordingly at a distance at least 1.5 times the parallel displacement range. If there is a possibility that light from another switch may enter the receiver, change the position of the emitter and receiver, place a light barrier between the switches, or take other measures to prevent the light from entering the receiver. Adjust the sensitivity. Lowering the sensitivity will generally help.
2.3 Interference from the mounting surface

Irregularities in a rough surface may be detected as target objects, causing unreliable operation, as illustrated below. Raise or lower the switch or alter that operating angle to ensure reliability.

![Image](image1.png)

Switch raised off the mounting surface

2.4 Influence from the background

The background behind target objects may affect the operation of diffuse-scan switches, depending on its luminance and reflectivity. Generally, a black background is desirable.

![Image](image2.png)

2.5 Direction of motion of the target object and orientation of the switch (for retroreflective switches restricted by distance measurement)

- Pay attention to the orientation of the switch with respect to the direction of travel of target objects.

![Image](image3.png)

- Install the switch in the same manner even if the color or surface condition of the target objects changes greatly.

2.6 Power ON/OFF

- Power reset time

The switch will be ready to detect approximately 10 to 100 ms after the power is turned ON. If the switch and the load are connected to separate power supplies, turn ON the switch power before turning ON the load power.

- Turning OFF power

An output pulse may be generated when the power is turned OFF. It is recommended that the load or load line power be turned OFF before the switch power is turned OFF.

2.7 Light intensity saturation in minute target detection

Use the aperture mask (sold separately or included). It is effective to saturation due to a short scanning distance (no light level difference in different detection status).

Available for HP100 series, HPJ series, HPF-T021T, HPF-T021WT, etc.

2.8 Light intensity saturation in minute level difference

Receiving light intensity saturation may occur in detecting transparent or semi-transparent target with thru-scan switches, or in detecting target-background level difference. There are two kinds of saturations: saturation in circuit and saturation in indication.

- Light intensity saturation in circuit

Switches with self-contained amplifiers

(No indicator status change in detection status change)

Target present

Target absent

The situation does not change even adjusting the tuning potentiometer in target present status.

- Light intensity saturation in indications

Fiber-optic switches

With the target

Without the target
3. Environment

3.1 Effects of dirt and dust

Various parts of recent photoelectric switches are made of plastic. These parts (access windows, lenses, and reflectors) are easily damaged when soiled and must be cleaned regularly. Clean them by wiping softly with a clean cloth. Water and a neutral detergent may be used. Do not use organic solvents such as benzene, acetone, or paint thinner: the switch may be damaged. Optical parts made of glass can be cleaned quickly with alcohol.

Do not use water to enter from here.

4. Wiring

4.1 Power

Malfunction may occur as a result of high-frequency noise from a switching regulator. If a switching regulator must be used, ground its frame.

4.2 Connections

Be sure to correctly connect the switch to the power and to the load. If there are high voltage or power lines near a photoelectric switch cable, isolate the switch cable to prevent surge or noise influence. Connect leads securely using crimp terminals or the like. If extending the cable, use wire of at least 0.3 mm² in cross-sectional area for switches with built-in amplifiers. The cable length should not exceed 100 m. Consider the effects of increased noise due to cable extension. Tightening the cord with excessive tension might cause line break. Do not apply a force of more than 50 N. When using a load which generates an inrush current above the switching capacity, such as a capacitive load or incandescent lamp, connect a current-limiting resistor between the load and the output terminals. (Otherwise, the output short-circuit protection function will be activated.) Do not bend the part of the cable nearest to the amplifier beyond the bend radius of 30 mm. Avoid continuous bending stress.

Switch cable

High-voltage cable or power cable

Earth ground

Do not use the same conduit

<table>
<thead>
<tr>
<th>Examples of target object that might cause faulty operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Target object covered with a transparent film</td>
</tr>
<tr>
<td>- Semi-transparent target object (semi-transparent case, etc.)</td>
</tr>
<tr>
<td>- Mirror or highly reflective mirror-like object.</td>
</tr>
<tr>
<td>- Mount the switch at a slight angle to the target object.</td>
</tr>
<tr>
<td>- Increase the distance between the switch and the target object.</td>
</tr>
<tr>
<td>- Lower the sensitivity setting of the switch.</td>
</tr>
</tbody>
</table>

Countermeasures:

- Set to the anti-saturation mode, or to the sensing type with higher response speed.
- Separate the two fiber units, or separate the fiber unit from background.
- For diffuse-scan fiber units, light intensity may have a certain level even without the target due to the fiber internal reflection called crosstalk. In this case, detection remains the light status at the maximum sensitivity. Execute the BGS (an auto-tuning type of HPX-AG/EG series, etc.) or other tuning.
- When a polarized retroreflective switch is used to detect highly reflective object or objects that disturb polarization, detection might be inconsistent. In such case, take the following countermeasures:

3.2 Ingress protection

Generally, the performance of a photoelectric switch is not guaranteed when it is subject to rain or sprayed water, or when there are water drops or dew on the lens surface. Therefore, it is necessary to carefully select a switch with characteristics that are appropriate for the environment where it will be used.

Since the end of the cable is outside the protective structure, be sure to keep it away from water.

3.3 Effects of ambient light

Malfunction may occur due to the influence of strong light sources, such as the sun, spotlights, or infrared lamps in the range of the receiver’s optical axis. Change the location or angle of the switch to prevent strong rays from directly striking the receiver lens. Ambient light can be prevented from affecting the light receiver by using a hood or light shielding plate, as shown below.

4. Countermeasures

Switches with self-contained amplifiers

1. For thru-scan switches, separate the emitter and the receiver.
2. For diffuse-scan switches, separate the switch from background.
3. For diffuse-scan switches, slanting the switch to the background decreases the reflection from the background in case of regular reflection material (mirror, mirror-finished stainless steel, etc.)

*The detection performance also depends on hysteresis, minimum detectable level difference. Light intensity saturation is not always the cause of the detection failure of minute level difference.

Fiber-optic switches

HPX-AG/EG series

1. Set to the anti-saturation mode, or to the sensing type with higher response speed.
2. Separate the two fiber units, or separate the fiber unit from background.

HPX series potentiometer tuning fiber-optic switch

1. Turn the tuning potentiometer to MIN direction and check if the problem is solved.
2. Separate the two fiber units, or separate the fiber unit from background.

*For diffuse-scan fiber units, light intensity may have a certain level even without the target due to the fiber internal reflection called crosstalk. In this case, detection remains the light status at the maximum sensitivity. Execute the BGS (an auto-tuning type of HPX-AG/EG series, etc.) or other tuning.

*When a polarized retroreflective switch is used to detect highly reflective object or objects that disturb polarization, detection might be inconsistent. In such case, take the following countermeasures:
5. Scanning range in fiber unit extension

Note that extending fiber length reduces scanning distance.

*Noise

Countermeasures for noise depend on the path of noise entry, frequency components, and wave heights. Typical measures are as given in the following table:

<table>
<thead>
<tr>
<th>Type of noise</th>
<th>Noise intrusion path and countermeasures</th>
</tr>
</thead>
</table>
| Common mode noise (Inverter noise) | ![Common mode noise diagram](image1)
Common noise applied between the equipment frame and the +V and 0-V lines, respectively.
 地膜的6号??| Common mode noise (Inverter noise) | ![Common mode noise diagram](image1)
Common noise applied between the equipment frame and the +V and 0-V lines, respectively.
 地膜的6号??|
| Radiant noise | ![Radiant noise diagram](image2)
Ingress of high-frequency electromagnetic waves directly into switch, from power line, etc.
 地膜的6号??| Radiant noise | ![Radiant noise diagram](image2)
Ingress of high-frequency electromagnetic waves directly into switch, from power line, etc.
 地膜的6号??|
| Normal mode noise (Power line noise) | ![Normal mode noise diagram](image3)
Ingress of electromagnetic induction from high-voltage wires and switching noise from the switching power supply
 地膜的6号??| Normal mode noise (Power line noise) | ![Normal mode noise diagram](image3)
Ingress of electromagnetic induction from high-voltage wires and switching noise from the switching power supply
 地膜的6号??|

*Work required for unconnected leads

Unused leads for self-diagnosis outputs or other special functions should be cut and wrapped with insulating tape to prevent contact with other terminals.

*Repeated bending

Normally, the switch cable should not be bent repeatedly.
6. Characteristics of Scanning Distance by Combination with Fiber Extender (typical values)

Thru scan

<table>
<thead>
<tr>
<th>Type</th>
<th>Model No.</th>
<th>Scanning distance and cable length when combined with fiber extender: HPX-AG (HP mode: 5 ms in response time)*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard fiber</td>
<td>HPF-T003</td>
<td>No extender: 1200 mm, Cable length:2 m, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:560 mm, Cable length:7 m, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 250 mm, 615 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:615 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 250 mm, 195 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:195 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Heatproof</td>
<td>HPF-T018</td>
<td>No extender: 3600 mm, Cable length:3 m, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:1510 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Area</td>
<td>HPF-T021T</td>
<td>No extender: 3600 mm, Cable length:3 m, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:1510 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Unbreakable fiber</td>
<td>HPF-T024</td>
<td>No extender: 140 mm, Cable length:2 m, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:37 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 28 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:28 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Pipe-mounted liquid level</td>
<td>HPF-T032 , T032E</td>
<td>Available2 Available2 Unavailable</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:5 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 27% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:27% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 20% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:20% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
</tbody>
</table>

Diffuse scan

<table>
<thead>
<tr>
<th>Type</th>
<th>Model No.</th>
<th>Scanning distance and cable length when combined with fiber extender: HPX-AG (HP mode: 5 ms in response time)*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard fiber</td>
<td>HPF-D002</td>
<td>No extender: 400 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:170 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 125 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:125 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D023: 170 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Heatproof</td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 47 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:47 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D023: 47 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 35 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:35 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D023: 35 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 21% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:21% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D023: 21% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Unbreakable fiber</td>
<td>HPF-D029</td>
<td>No extender: 25 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 8 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:8 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D029: 8 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 25% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:25% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D029: 25% HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Liquid leakage</td>
<td>HPF-D040</td>
<td>No extender: 440 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 195 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:195 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D040: 195 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td>Contact liquid level</td>
<td>HPF-D027</td>
<td>No extender: 440 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td>Related pages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D027: 1150 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%: 28 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable length:28 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPF-D027: 28 mm, HPF-EU05 (5 m), HPF-EU10 (10 m)</td>
</tr>
</tbody>
</table>

*1 For combinations other than with HPX-AG, please contact us.
*2 Even where availability is indicated, detection may not be possible depending on the liquid. Please check operation before use.

7. Tuning of HPX-MA analog output fiber-optic switch

The HPX-MA has 1-5 V dc light level analog output. Its tuning potentiometer and offset adjustor have the following functions:

- **Tuning potentiometer (3 turns)**
 - Offset adjustor

Offset tuning

The solid line in the chart is the original output voltage. Offset tuning is to shift this voltage (+ **V or − **V). Offset tuning range means possible shift voltage range.

Sensitivity tuning (range)

Sensitivity tuning adjusts the output gain. The solid line in the chart is the original output voltage. Output voltage for the same light intensity can be raised (A) or lowered (B). The sensitivity tuning range depends on the scanning distance or target condition.
1. General handling

- Do not swing the photoelectric switch by the cable. Do not pull excessively on the cable of the photoelectric switch.

- Do not strike or scratch the sensing head.

- Do not use photoelectric switch fiber-optic cables made of plastic where organic solvents are present.

- Do not bend the fiber part of a fiber optic switch excessively or subject it to unreasonable force.

- Do not apply excessive tightening torque to the head a fiber optic switch.

2. Fiber-optic photoelectric switches in explosive gas atmospheres

Fiber unit structure transmit only light beam. Since optical energy does not act as an ignition source, the fiber unit normally can be installed in the hazardous area, and the amplifier unit can be installed in a non-hazardous area. Before use, check the explosion-proof requirements for facilities or equipment.

3. Sticking aperture mask

Peel the back paper to stick the aperture mask (sold separately or included). Fit the aperture mask outline to the sensing face. The aperture mask might be peeled off if oil or dust is on the sensing face. Be sure to wipe it before sticking.

4. Precautions for handling fiber-optic switches

- Mounting the amplifier
 Mount the amplifier on the dedicated bracket (HPX-PA04, optional part) or DIN rail.

 ① Insert one rail of the bracket or DIN rail into the slot at point A.

 ② Push the unit downwards until the second rail clicks into place at point B. When mounting the amplifier on the DIN rail, always secure it with the HPF-PA03 end plate (optional part).

- Dismounting the amplifier
 If the amplifier is pushed forward firmly ①, the front lock will release. The amplifier can then be pulled out ② and detached, as shown in the figure.

- Expansion-unit attachment to the main unit for reduced wiring models (HPX-AG/EG series)

 ① Peel the seal off the connector of the units to be attached.

 ② Mount side by side on a DIN rail.

 ③ Slide the expansion units over to so that the connectors connect.

 ④ Use an end plate (HPX-PA03, sold separately) to hold the expansion units in place.

 ⑤ When dismounting, slide each expansion unit off one by one.

- Inserting optical fibers into the amplifier

 ① Open the cover.

 ② Move the fiber clamp lever forwards to the release position.

 ③ Firmly insert the tip of each fiber into the holes in the amplifier. For the insertion depth of the fiber, refer to the reference mark on the side of the unit.

 ④ Return the lever to the clamp position.

 ⑤ Close the cover.
Handling Precautions

- If the fiber is thin, first insert it into the thin fiber adapter so that the fiber projects approximately 0.5 to 1 mm from the top of the adapter. After that, insert the adapter into the hole in the amplifier until it is in contact with the end, and then fix it firmly.
- Do not bend the cable within 40 mm (in case of thin fiber: 10 mm) of its junction with the amplifier unit or the sensing head. Bending beyond the allowable bend radius might cause shortening the scanning range or fiber break.
- When connecting a coaxial reflection type fiber unit to the amplifier, insert the single-core fiber into the port for light emission and the multi-core fiber into the receiver port.
- The scanning range and indication value might vary depending on individual variability, mounting conditions or fiber unit types.

Fiber unit cautions

- Cutting fiber-optic cables
 Use the dedicated cutter (included with the unit) to cut the fiber. High and low temperature-proof fibers cannot be cut.
 ① Insert the fiber cable to the desired cutting length into one of the previously unused holes in the cutter.
 ② Push down the blade in one strong and smooth motion.
 ③ Do not reuse a hole once used to cut a fiber cable.
- If the sensing face is dirty, wipe with a soft, clean cloth. Do not use benzine, thinner or other organic solvents.
- Fiber insertion condition or fiber cutting condition may shorten the scanning range by approx. 20 %.
- For details about the specifications of the fiber unit and cautions for use, refer to the specifications.

- Heat-resistant fiber unit
 Fiber head color might change in high temperature.

- HPF-V series vacuum fiber units
 Although flanges, fiber units for vacuum and lens units are washed with IPA, baking is required before use.

- Mounting junction cautions
 A junction unit uses O-ring to obtain sealing performance. Do not weld it the chamber wall. Doing so might tarnish the internal glass rod.

6. Wet switch cautions

Fiber unit structure transmit only light beam. Since optical energy does not act as an ignition source, the fiber unit normally can be installed in the hazardous area, and the amplifier unit can be installed in a non-hazardous area. Before use, check the explosion-proof requirements for facilities or equipment.

- Mounting HPF-T032/T032E/T034/T034E pipe-mounted fiber units
 As shown below, mount the fiber unit using the included cable ties and anti-slip tubes. Firmly tighten the two upper and lower cable ties and then cut off any extra length. If an additional cable tie is required, use one no more than 2.5 mm wide.

- Mounting HPQ-T pipe-mounted liquid-level switches
 The HPQ-T is pipe-mounted using either an M3 screw or cable tie. When mounting the switch with a cable tie, be sure to secure the switch by passing the cable tie through silicone tube to prevent the switch from slipping.

- Do not deform the pipe in mounting the HPQ-T with cable tie.
- Detection stability depends on the transmissivity and refractive index of the pipe and liquid. Check the operation before use.
- Water drops, bubble or fogging may cause faulty detection.
- In case dripping causes output chattering, use a timer in connected device to cancel it. Delay timer is available for amplifiers of fiber-optic switches.
- The HPQ-T does not have ingress protection structure. Be careful for use in liquid splashing environment.
Mounting HPQ-D liquid leak detectors
Mount the switch horizontally. After locking the mounting base in position, insert the switch body onto the mounting base and fix it in place by tilting down the locking clasp of the switch.

Fastening with screws
Remove the knock-out holes of the mounting base and place the switch on two stainless steel (etc.) M4 stud bolts welded on the metal pan. Secure with two M4 nuts. For the PFA type, mount similarly with one M3 stud bolt.

Mounting with adhesives
The PVC bracket type can be mounted with adhesive. If the mounting surface is PVC (vinyl chloride), the same material as the bracket, the use of monomeric adhesives for vinyl chloride is recommended. However, be sure to check the specifications of the adhesive to be used, taking into consideration the material of the other mounting surfaces.

*For use in explosive atmosphere
Since this product is not an explosion-proof type, it cannot be used in an explosive atmosphere.

Mounting HPF-D040 liquid leak fiber-optic detectors
When using an SUS mounting base, insert the welded M3 stud bolt into the hole of the mounting base, and then fasten with an M3 nut (not supplied). Then put the ridges of the dedicated mounting base into the grooves of the fiber-optic switch, and then slide the base forward until it is in place.

Mounting HPF-D027/D033 tank-level fiber-optic cables
To install the fiber-optic switch, use a commercially available fluorine-resin joint that matches the outside diameter of the PFA tube.

Mounting HPF-T029 series/T035/D014 chemical-proof fiber-optic cables
To install the fiber-optic switch, use a commercially available fluorine-resin joint that matches the outside diameter of the PFA tube.

The level at which liquid is detected differs according to surface tension and wet condition of HPF-D027 detection part.

Mounting HPQ-D liquid leak detectors
Mount the switch horizontally. After locking the mounting base in position, insert the switch body onto the mounting base and fix it in place by tilting down the locking clasp of the switch.

Fastening with screws
Remove the knock-out holes of the mounting base and place the switch on two stainless steel (etc.) M4 stud bolts welded on the metal pan. Secure with two M4 nuts. For the PFA type, mount similarly with one M3 stud bolt.

Mounting with adhesives
The PVC bracket type can be mounted with adhesive. If the mounting surface is PVC (vinyl chloride), the same material as the bracket, the use of monomeric adhesives for vinyl chloride is recommended. However, be sure to check the specifications of the adhesive to be used, taking into consideration the material of the other mounting surfaces.

*For use in explosive atmosphere
Since this product is not an explosion-proof type, it cannot be used in an explosive atmosphere.

Mounting HPF-D040 liquid leak fiber-optic detectors
When using an SUS mounting base, insert the welded M3 stud bolt into the hole of the mounting base, and then fasten with an M3 nut (not supplied). Then put the ridges of the dedicated mounting base into the grooves of the fiber-optic switch, and then slide the base forward until it is in place.

Mounting HPF-D027/D033 tank-level fiber-optic cables
To install the fiber-optic switch, use a commercially available fluorine-resin joint that matches the outside diameter of the PFA tube.

Mounting HPF-T029 series/T035/D014 chemical-proof fiber-optic cables
To install the fiber-optic switch, use a commercially available fluorine-resin joint that matches the outside diameter of the PFA tube.

The bend radius of the protective tube must be more than the minimum bend radius specified for each fiber unit. If it is less than the minimum bend radius, it may damage the fiber unit.

Do not apply excessive tension to the fiber-optic cable.

7. HPF-EU05 fiber-optic cable extension unit
The scanning range will be decreased by 1/4 times from original.
Recommended mounting hole
Single-mounted

Gang-mounted
Panel thickness: 1.0 to 2.0 mm

Refer also to User’s Manual and Specifications of each model.
PFA CHEMICAL PROOF

<table>
<thead>
<tr>
<th>Substance</th>
<th>PFA chemical prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy oils A/B/C</td>
<td>OK</td>
</tr>
<tr>
<td>Aniline</td>
<td>C₆H₅NH₂</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>C₂H₃CN</td>
</tr>
<tr>
<td>Asphalt</td>
<td>(CH₃)₂CO</td>
</tr>
<tr>
<td>Acetone</td>
<td>i-C₈H₁₈</td>
</tr>
<tr>
<td>Methanol</td>
<td>C₂H₅OH</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₄⁺</td>
</tr>
<tr>
<td>Isooctane</td>
<td>i-C₄H₉OH</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>C₄H₉COCH₃</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₅OH</td>
</tr>
<tr>
<td>Ether</td>
<td>(CH₃)₂O</td>
</tr>
<tr>
<td>Enamel paint</td>
<td>C₂H₄(OH)₂</td>
</tr>
<tr>
<td>Ammonium chloride</td>
<td>NH₄Cl</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>NaCl</td>
</tr>
<tr>
<td>Barium chloride</td>
<td>BaCl₂</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl₂</td>
</tr>
<tr>
<td>Gasoline</td>
<td>OK</td>
</tr>
<tr>
<td>Glass ingredients</td>
<td>OK</td>
</tr>
<tr>
<td>Dilute hydrochloric acid</td>
<td>HCl</td>
</tr>
<tr>
<td>Dilute sodium hydroxide</td>
<td>NaOH</td>
</tr>
<tr>
<td>Dilute acetic acid</td>
<td>C₂H₄COOH</td>
</tr>
<tr>
<td>Dilute nitric acid</td>
<td>HNO₃</td>
</tr>
<tr>
<td>Dilute sulfuric acid</td>
<td>H₂SO₄</td>
</tr>
<tr>
<td>Citric acid</td>
<td>C₆H₈(OH)₂(COOH)₂</td>
</tr>
<tr>
<td>Glycerin</td>
<td>C₃H₈(OH)₃</td>
</tr>
<tr>
<td>Cresol</td>
<td>C₆H₅(OH)(CH₃)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>CH₃Cl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>PFA chemical prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light oil</td>
<td>OK</td>
</tr>
<tr>
<td>Paraffinum liquidum</td>
<td>OK</td>
</tr>
<tr>
<td>Sodium dichromate</td>
<td>Na₂Cr₂O₇</td>
</tr>
<tr>
<td>Barium nitrate</td>
<td>Ba(NO₃)₂</td>
</tr>
<tr>
<td>Silicone oil</td>
<td>OK</td>
</tr>
<tr>
<td>Plant oil</td>
<td>OK</td>
</tr>
<tr>
<td>Thinner</td>
<td>OK</td>
</tr>
<tr>
<td>Barium hydroxide</td>
<td>Ba(OH)₂</td>
</tr>
<tr>
<td>Phenol</td>
<td>C₆H₅OH</td>
</tr>
<tr>
<td>Turbine oil</td>
<td>OK</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>Na₂CO₃</td>
</tr>
<tr>
<td>Turpentine</td>
<td>OK</td>
</tr>
<tr>
<td>Natural volatile oil</td>
<td>OK</td>
</tr>
<tr>
<td>Kerosine petroleum</td>
<td>OK</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>C₃H₅Cl₃</td>
</tr>
<tr>
<td>Trichlormethylene</td>
<td>C₃H₆Cl₃</td>
</tr>
<tr>
<td>Toluene</td>
<td>C₆H₅CH₃</td>
</tr>
<tr>
<td>Naphtha</td>
<td>C₇H₈</td>
</tr>
<tr>
<td>Acidum lacticum</td>
<td>OK</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>C₆H₅NO₂</td>
</tr>
<tr>
<td>Hydrofluoric acid (hydrogen fluoride)</td>
<td>HF</td>
</tr>
<tr>
<td>Ferrosilicon</td>
<td>OK</td>
</tr>
<tr>
<td>Freon 11</td>
<td>FCCl₃</td>
</tr>
<tr>
<td>Propyl alcohol</td>
<td>C₃H₇(OH)₂</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>C₃H₇(OH)₂</td>
</tr>
<tr>
<td>Benzene</td>
<td>C₆H₆</td>
</tr>
<tr>
<td>Methyl violet</td>
<td>OK</td>
</tr>
<tr>
<td>Water</td>
<td>H₂O</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>CCl₄</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>(NH₄)₂SO₄</td>
</tr>
</tbody>
</table>

*For information on hydrofluoric acid, contact our sales staff.

Additional Notes:
- The above table is not a guarantee that the product can be used with the indicated substance.
- Substances such as strong acids and ammonia may penetrate PFA (fluororesin).

Before use, thoroughly read the “Precautions for use” and “Precautions for handling” in the Technical Guide on pages A-141 to A-156 as well as the instruction manual and product specification for this switch.